
The Design of a Transport Protocol for On-Demand
Graphical Rendering

Albert F. Harris, III
�

University of Illinois Urbana - Champaign

aharris@uiuc.edu

Robin Kravets
University of Illinois Urbana - Champaign

rhk@cs.uiuc.edu

ABSTRACT
In recent years there have been significant advances in 3D scan-
ning technologies that allow the creation of meshes with hundreds
of millions of polygons. A number of algorithms have been pro-
posed for the display of such large models. These advances, cou-
pled with the steady growth in the speed of network links, have
given rise to a new area of interest, the streaming transmission and
visualization of three-dimensional data sets. We present a number
of issues that must be addressed when designing a transport proto-
col for three-dimensional images as well as a method of transport.
We then evaluate an implementation of an On-Demand
Graphic Transport Protocol (OGP) that addresses these issues.

Categories and Subject Descriptors
C.2.2 [Computer]: Communication Networks

General Terms
Design

Keywords
transport protocol, partial reliability, partial order, 3-D models, stream-
ing

1. INTRODUCTION
With the enormous increase in computing power of today’s home

computers, it is now possible for complex three-dimensional mod-
els to be used in home applications. The growth of the Internet
introduces the possibility of using such three-dimensional mod-
els on websites and online applications. The size of the models,
with the corresponding long download times, prohibits transferring
the models completely before rendering begins; therefore, efficient
methods for streaming three-dimensional models must be devel-
oped if the models are to be used in online applications. The use
of a streaming protocol allows the user to begin viewing a por-
tion of the model before transmission is completed. This type of

�Work funded in part by the NSF under grant CCR-0086094

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’02 May 12-14, 2002, Miami, Florida, USA.
Copyright 2002 ACM 1-58113-512-2/02/0005 ...$5.00.

streaming is, however, distinct from the problem of video stream-
ing. Videos can be loss-tolerant and are linearly ordered. By con-
trast, three-dimensional images are not linearly ordered. Given
this information, we observe that while video streams have time-
dependencies between video segments, three-dimensional images
have space-dependencies between picture segments. This leads to
radically different methods for optimal transport.

A common scheme for rendering three-dimensional models is
based on a bounding volume approach. The data structure con-
taining the models is a tree with certain properties, such as loss-
tolerance yielded by the partial ordering of the data structure, that
can be leveraged to facilitate efficient streaming. The nodes of the
tree represent bounding volumes of the model with the roots of the
tree representing spheres that encompass the entire model. Nodes
lower in the tree represent successively smaller volumes, the leaves
being the smallest resolution points. The dependencies in the tree
run along the branches. Each node is dependent only on its par-
ent node and there is no ordering among siblings in the tree. This
allows a certain flexibility in the reliable transport of the model be-
cause losses only affect subtrees rooted at the lost nodes. Another
facet of the tree is that greater resolution is achieved by running
down the tree, therefore it is possible to achieve a lower resolu-
tion version of the model by only streaming down to a certain level
within the tree. The ability to send only part of the tree for ren-
dering can be leveraged to control the quality of the model based
on the bandwidth available to the user. A further property of the
tree is that particular branches in the tree correspond to particular
spatial sections of the picture. It is possible to take advantage of
this fact and render exclusively, or more completely, the sections
of the image that are of interest to the user, perhaps by allowing
the user to mouse-over the portion of the model in which they are
interested [14].

We therefore contribute an analysis of the issues involved in de-
veloping an efficient transport protocol for streaming three-dimen-
sional models and the design of the On-Demand Graphic Trans-
port Protocol (OGP). The standard Internet transport protocols are
not appropriate for streaming such models. TCP’s [11] full relia-
bility can create unnecessary delays in the stream, but UDP [12]
does not provide the rendering application the reliability it requires
to maintain the partial ordering [3]. Therefore we present a pro-
tocol that maintains the partial ordering required by the render-
ing applications. We present a good node packing algorithm that
can maintain properties such as loss-tolerance constant throughout
transport, thereby allowing the transport protocol to continue to ex-
ploit these properties. We demonstrate that better performance can
be obtained by a transport protocol by taking advantage of these
properties.

43

The rest of this paper is organized as follows. In Section 2,
we describe approaches to streaming media in general, discussing
their limitations. In Section 3, we present our analysis of the tree
structured three-dimensional models and the design of an efficient
streaming protocol for three-dimensional models. In Section 4, we
present the parameters used in designing an efficient protocol for
three-dimensional model transport. We then present the imple-
mentation of the On-Demand Graphic Transport Protocol (OGP).
In Section 5 we present the results of the evaluation of OGP. In
Section 6, we present some conclusions about three-dimensional
model streaming.

2. STREAMING MEDIA
The sheer size of media, such as entire videos and three-dimen-

sional models, leads us to consider new representations that enable
intelligent partitioning of the data into smaller application-layer
data units [4]. Such partitioning supports the streaming of data,
providing the benefits of pipelining data transmission with data pre-
sentation. This new type of media is often progressive, with each
additional piece of data adding to what has already been recieved.
Protocols such as RTP [15] make use of application level framing.
Many such protocols are integrated directly into the application,
which would then sit on top of UDP. This allows the applications
to be run without changes to the current Internet technologies. This
research in streaming media has mainly focused on video as the
media of choice. RTP, for example, is tailored to handle real-time
requirements that are inherent in video. The streaming of three-
dimensional models introduces different requirements for the trans-
port of model data based on the structure of the data.

2.1 Video
Since a video is the progressive representation of images, stream-

ing video is naturally represented by a sequence of frames or groups
of frames for optimization. These frames represent a fully linear se-
quence. Loss cannot be tolerated within a frame, but each of these
frames is an independent entity, enabling streaming video protocols
to tolerate the loss of some frames. Essentially, these protocols are
memory-less. For example, in MPEG encoding, the I-, P-, and B-
frames must be in order to be usable but the stream can tolerate
the loss of a B-frame affecting only the subsequent B-frames un-
til the reception of the next I-frame [6]. There are also strict time
considerations with video. Once the play-out time for the frame
following a lost frame expires, it is too late to do anything with that
lost frame. Such partitioning of video divides it into application
data units that have temporal locality. Each group of pictures is
related to the others in time, not space.

The usefulness of designing image models that allow losses in
particular parts of the image, thereby allowing the continued trans-
fer and display of the rest of the image, with the lost piece appear-
ing as a small blank has been shown to help intra-frame loss [16].
This can be seen as a motivating step toward the structuring of mod-
els using spatial partitioning as opposed to temporal partitioning.
Three-dimensional modeling uses this concept extensively.

2.2 Three-Dimensional Models
The design goal of three-dimensional models is to provide a rep-

resentation of an object for presentation to the user. In order to
provide a complete representation, all data must be available for
presentation. In order to support more flexible presentation of data,
these models have been designed in a progressive manner; the more
of the data that is available, the better the quality of the presenta-
tion. The three-dimensional models are divided into application
data units that have spatial locality. Each node is related to the oth-

ers with respect to their relative positions in the actual model. Such
models inherently require memory of all available data. Model rep-
resentations based on the bounding volume approach have a tree-
based structure. This structure provides a partial ordering on the
data. Each node that refines a particular spacial location on the
model is dependent on all previous nodes that involve that location.
If a node from one part of the model is lost, this does not affect
other sections of the model. In this way, the data is non-linear. The
partial ordering can be leveraged to make significant performance
gains in the face of loss [2, 3, 8]. It is possible to maintain the
stream efficiently by carefully keeping track of the dependencies
existing between parts of the data structure [9].

When a loss is encounter in a model, any received children of the
lost node cannot be rendered. If the rendering is on-demand, then
the time delay in rendering caused by the transmission of nodes
that cannot be immediately rendered will be perceived. In order
to avoid this, nodes that are dependent on the loss should not be
transmitted until the lost node is re-transmitted and received. This
implies that rapid loss detection is essential to efficiently stream
models for on-demand rendering. To this end, there has been some
work in finding effective ways to detect losses early. Papadopoulos,
et. al. [10] use gap-based loss detection as opposed to timer-based
loss detection. This minimizes the latency for loss detection. While
the time constraints for three-dimensional models are different than
for video, it will still prove to be very useful to minimize the time
it takes to detect a loss. By detecting losses early and transmitting
only sections of the data structure that can be rendered, the door
is opened for the possibility of not re-transmitting lost data imme-
diately if it is not desired. This amounts to varying the level of
reliability for the transfer of each packet. Varying the reliability
levels dynamically during transmission of data has been shown to
be useful in creating better efficiency in the transfer of data that can
sustain some loss [7].

One approach to streaming three-dimensional models is to trans-
mit data progressively with lower resolution data being transmitted
first and then streaming higher-resolution data to fill in the details.
One approach [13] uses the HTTP/1.0 protocol to request data from
a standard web server, such as Apache, that would send requested
bits of data to the client. We believe this approach is not optimal
because it does not make use of the properties of the data structure.

Since node size will not always be the same as packet size, it is
important to consider how to pack the models into packets. The
problem is essentially one of linearization. The tree in which the
three-dimensional models is not linear, it is partially ordered, but
transmission over the network requires linearization. If the data is
not intelligently linearized, we can end up transmitting data that
can not be used.

3. APPLICATION DATA PROPERTIES
Today, the transport of data across the Internet is achieved pri-

marily through the use of two transport protocols, TCP and UDP.
TCP provides a fully reliable means of communication that guaran-
tees in-order delivery of all packets sent without duplication. UDP,
on the other hand, provides no reliability guarantees at all, pack-
ets may come out of order or even not at all. With the widespread
use of these two transport protocols, it is tempting to take a very
binary, one-dimensional view of transport service. The tendency
is to either see the data transmission as reliable and fully ordered
or not reliable and unordered. The main problem is that this cuts
off a large portion of the possible space. Really, transport service
should be seen as a two dimensional continuous function involving
guarantee of delivery and ordering as in Figure 1 [2, 3, 7, 8].

44

UDP

Ordering

Reliability

Full

No

None 100%

TCP

Partial Ordering

Partial Reliability

Figure 1: Transport Service Space

3.1 Exploring the Service Space
Once the transport service space is expanded, the impact of using

the incorrect transport service level can be analyzed. There are
three possible relationships between the transport service level used
in the transmission of data and the actual need of the application
requiring the transmission.

1. The level of transport service is optimal for the application.

2. The level of transport service is too high for the application.

3. The level of transport service is too low for the application.

For the second two relationships, there are two different aspects in
which the transport service level could be seen as too high or low
for an application.

1. The ordering requirements can be too strict or lax.

2. The loss tolerance can be too strict or lax.

The various combinations of possibilities are derived directly from
the expanded transport service space. The effects of the situations,
however, must be discussed systematically.

3.2 Mapping Channel Service to Application
Requirements

If an optimal transport service level is chosen for the transport
of an application’s data, it is clear that there will be no wasted re-
sources providing services that the application does not require. It
is also clear that the application will be able to function since all of
its service requirements would be met by the optimal matching.

The interesting cases to study are the sub-optimal cases. If there
is no significant impact on performance when a sub-optimal choice
in transport service level is chosen, there would be no reason to
consider alternative transport mechanisms to TCP.

If the reliability level required by the application is not met, it
will be impossible for the application to produce correct results.
The actual effects on the application are scenario specific, but can
range from total failure to incorrect functionality [9]. Similar ef-
fects can be seen from an inappropriate ordering constraint. If the
application’s ordering requirements are more strict than the trans-
port layer can provide, then again the application will fail to func-
tion correctly. For three-dimensional modeling applications, it is
not possible for the rendering engines to deal with loss or complete
mis-ordering, therefore it is clear that UDP will not provide a suf-
ficient level of transport service.

Dependencies
run down

the branches

No dependencies between siblings

Figure 2: Partially Ordered Tree

If the transport service level required by the application is sur-
passed by the network, unnecessary delays and a loss of goodput is
experienced. A similar result occurs when the ordering constraints
of the network are too strict. If this happens, it is possible that some
data will be ready to be sent but will have to wait due to false or-
dering constraints. In this way, both throughput and goodput will
suffer [9].

3.3 Maintaining Application Data Properties
While there has been research into designing protocols that can

handle partial orderings [2, 3, 8], the protocol to handle stream-
ing bounding-sphere based three-dimensional models must be spe-
cially tailored. Current partial order protocols address the order-
ing of packets, but not how data will be organized into packets.
Given that a node in a three-dimensional model may not fill an
MTU, it may be necessary to pack multiple nodes in one packet.
Such packing can greatly improve the performance and efficiency
of the transmission of the model, but must be accomplished within
the constraints of the original ordering. Also, due to the very spe-
cific nature of the tree and its partial ordering, a specialized trans-
port scheme can enable on-demand improvement of specific, user-
chosen parts of the model.

We now analyze the tree used to store the models in bounding
sphere methods of rendering. The only ordering constraint is that
for any child received, its parent must have been received first. Es-
sentially, there must be complete ordering only down the legs of
the tree, as in Figure 2.

The nodes of the tree represent the smallest data units that can
be drawn, with each node relying on its parent. The leaves of the
tree represent the individual pixels fully rendered. The nodes of
the tree can vary between a few bytes and a few hundred bytes.
Because of this small size, more than one node can be put in each
packet. A decision must be made on the order in which to pack the
nodes together. The main constraint is that transmission must not
continue too far down any path in which one of the parent nodes
has been lost or not yet been acknowledged. This problem can be
avoided by only allowing new nodes to be sent after an acknowl-
edgment has been received for the node’s parent. Such information
can be integrated into the flow control mechanism as discussed in
Section 4.1.

Node packing is very important in order to maintain the partial
ordering throughout transmission of the model. We note that any
subtree of the tree will have the same data structure properties as

45

the whole tree. Therefore, in order to be able to leverage the prop-
erties that have been discussed throughout transport, nodes must be
packed in such a way as to not break the subtree relationships across
packets. Packing the nodes of the tree in a subtree-by-subtree order
will effectively maintain the partial ordering of the tree throughout
transmission. The details of node packing are discussed in Sec-
tion 4.1.

4. AN ON-DEMAND GRAPHIC TRANSPORT
PROTOCOL (OGP)

There are fundamental design decisions that must be made in
order to optimize a protocol for the transport of three-dimensional
models. The inherent loss tolerance and partial ordering of the tree
should be leveraged in order to efficiently stream the models. The
models can sustain no loss along any branch. However, due to the
fact that there are no dependencies between siblings in the tree,
if a loss occurs, streaming of other branches in the tree may con-
tinue without interruption. The inherent loss tolerance of the data
structure can be leveraged to allow the transfer of data to continue
in the face of loss. The partial ordering of the data structure can
be leveraged to allow the protocol to continue to transfer the data
smoothly in the face of lost or reordered packets. The partial order-
ing can also be used to allow the protocol to take into account user
focus information and to transfer only the part of the model that is
currently in focus. The protocol must also contain some method of
deciding when it is appropriate to retransmit lost packets and which
packets to retransmit. Finally the protocol must package the nodes
in such a way as to maintain the properties of the data structure
throughout the transfer. In the following subsections, we present
our implementation of a three-dimensional model streaming pro-
tocol, OGP. We use OGP to illustrate how these issues in protocol
design can be resolved.

OGP is a self-clocked protocol that makes use of TCP conges-
tion control algorithms [1]. Self clocking is achieved by allowing
the receipt of an acknowledgment to trigger the transmission of
new packets. In the current version of OGP, every packet is ac-
knowledged, therefore, the loss of an acknowledgment implies the
loss of a packet. This problem could be fixed by using selective-
acknowledgments instead of single-packet acknowledgments. Con-
gestion control is managed through the use of a window mechanism
that monitors the number of outstanding packets, as discussed in
Section 4.2.

Because it is possible for multiple nodes to be sent in one packet,
the sender maintains a mapping between nodes and packets. In
this way, the receiver can acknowledge packets and the sender can
then map these acknowledgments onto acknowledgments of nodes,
which are used by the packing algorithm as described in Section 4.1.

4.1 Node Packing
In order to take advantage of the properties of the tree, the par-

tially ordered data structure must be linearized and sent across the
network while maintaining the inherent properties. In order to do
this, the partial ordering relations of the tree, as well as the spacial
relations of the tree nodes, should be used. OGP begins by packing
the largest possible subtree at the root. After this first packet has
been acknowledged each node sent in that packet can now be used
as a root of a new subtree to send. OGP continues by packing the
children of the acknowledged nodes as roots of largest subtrees in
breadth-first order [Figure 3]. Essentially, the largest possible next
subtree is being packed in each successive packet. In the event of a
loss, OGP avoids sending any of the children dependent on the lost
nodes until the lost nodes have been successfully re-transmitted.

The goal is to maintain a subtree-by-subtree transmission pattern
in order to keep the partial ordering and reliability properties of the
entire model constant throughout transfer.

In order to keep track of what nodes have been sent, markers are
added into the data structure that can be set as sent and ackd. As
the tree is traversed breadth-first while packing nodes, the nodes
are marked as sent. When a packet is acknowledged, each node
contained in the packet is marked as ackd. Pointers are kept to the
first node in the tree that is not acknowledged and the current node
needing to be sent. In this way nodes needing to be marked and
nodes needing to be re-transmitted can be found efficiently while
still walking forward in the tree.

The packing algorithm works as follows. Get Next Node takes
the current sub tree as the root of a tree and increments node
in breadth-first order using a standard tree walking algorithm.
Get Next Subtree increments current sub tree to the next
unmarked node in the tree using a standard breadth-first tree walk-
ing algorithm.

current_sub_tree = root_of_tree;
node = root_of_tree;
while(node != end_of_tree)
{

while(!Packet_Full(packet))
{

Append(node,packet);
Mark(node);
Get_Next_Node(current_sub_tree,node);

}
Send(packet);
Empty(packet);
Get_Next_Subtree(current_sub_tree);
node = current_sub_tree;

}

To illustrate the algorithm, consider an example of a three-dimen-
sional model with node sizes of 150 bytes. The tree has a branching
factor of 4. Consider a link over the Internet between a client and
server with a delay of 20ms and a bandwidth of 256Kbits. The
Ethernet frame size is 1500bytes. 10 nodes fit per packet and there
can be at most 5 packets in flight between the last acknowledged
and the last sent packets. Given this information, if the first nodes
are packed in breadth-first order in the first packet, there will be 15
nodes that can be rendered but have not yet been sent. If nodes are
continued to be packed breadth-first, there are possible cases where,
after a loss, data will still be sent that cannot be rendered because
the loss will not yet be noticed on the sender side. This problem
will be exacerbated by smaller nodes sizes, such as Qsplat’s 4 byte
node sizes [14]. If however, the node packing is done intelligently,
the branching factor of the tree can be leveraged to prevent the pos-
sibility of transmitting data that cannot be immediately rendered,
see Figure 3.

4.2 Congestion Control
The loss tolerant nature of the data structure allows OGP to con-

tinue transmitting data in the face of losses. The only invariant
that must be maintained is that no node whose parent has not yet
been received should be sent. The packing algorithm in Section 4.1
insures that the ordering properties of the tree will be maintained
throughout transmission. A flow control algorithm is needed, how-
ever, to insure that nodes are always available whose parents have
already been acknowledged when it is time to send. OGP should
also react to congestion appropriately so that it is TCP friendly.

46

First Packet

Further packets group
subtrees moving across tree

Figure 3: Intelligent Packing Order

For congestion control, OGP reacts much the same way as TCP
New-Reno, making use of the slow-start, congestion avoidance,
fast recovery, and fast retransmit algorithms common to TCP [1].
Changes have been made to account for the fact that it does not need
to actually retransmit a lost packet. OGP does require losses to be
identified by the sender, however, so that nodes can be marked cor-
rectly. OGP uses a TCP like sequence numbering scheme. The re-
ceiver always acknowledges the sequence number received and not
the sequence number of the next packet expected. This is necessary
because packets are not retransmitted so a lost sequence number
will never be received.

OGP has a congestion window, cwnd. The cwnd is started at
1 and is increase according to the TCP New-Reno algorithms. Ac-
cording to these algorithms, cwnd is never increased by more than
one at any received acknowledgment. The cwnd is reduced due to
loss according to the TCP New-Reno algorithms.

A loss is detected when the acknowledgment received at the
sender is not the next acknowledgment expected. In order to re-
late a packet loss to a node loss, the sender maintains a mapping
between packets and nodes that are in flight. When a loss occurs,
the sender refers to this mapping to decide which nodes were lost
in the lost packet. The nodes in the lost packet are then marked
unsent. It is possible that packets that are reordered will be consid-
ered lost. This is not a real problem, however, because OGP does
not immediately retransmit lost packets, therefore when the packet
is eventually received and acknowledged, the nodes will be marked
ackd. OGP also has a time-out mechanism to allow it to recover in
the face of losses of acknowledgments like TCP New-Reno.

Because packets may be lost and never retransmitted, a standard
sliding window, such as the one TCP uses, cannot be used. Instead
only the number of packets still in flight need be considered, which
can be calculated based on the last packet acknowledged and the
last packet sent. This number is compared with the value of cwnd.
When the number of packets in flight is less than the congestion
window, OGP can send. Each time an acknowledgment is received,
OGP will send as many packets as it can.

An important issue is to make sure that there are always nodes
whose parents have been acknowledged with which to build the
next subtree to send in a packet. Consider that a packet is only
sent after an acknowledgment is received. Also consider that the
congestion window is never opened by more than 1. Then, in the
face of no losses, there will never be more than 2 packets sent per
acknowledged packet. Therefore, as long as the data structure has
a branching factor of 2 and there is at least 1 node per packet, there
will always be nodes to send. In the face of losses, it is possible that
more than 2 nodes may be sent after an acknowledgment. How-
ever, the congestion window is halved when a loss is encountered
for each round-trip-time. Therefore, there will not be more pack-
ets to send until a number of new acknowledgments have arrived.
Therefore, either the branching factor of the structure must be at

least four, or there should be at least three nodes per packet. The
largest node size that we have observed in the three-dimensional
modeling schemes using bounding volumes is 300 bytes and the
branching factors are typically 4. It is not unreasonable to assume
that 4 nodes fit per packet, giving the needed 4 nodes to send per
acknowledgment even assuming only a branching factor of 2.

4.3 Exploiting the Partial Ordering
The partial ordering of the data structure combined with the node

packing algorithm allows OGP to insure that the packets in flight
are not dependent on one another. Because of this, OGP does not
need a standard congestion-window and can focus on the number
of nodes in flight. Therefore, OGP can continue to send in the face
of packet reordering and loss. The only reason OGP should slow
transmission is in response to congestion. Therefore, OGP should
see more throughput than TCP. This result is achieved as shown in
Section 5.

The partial ordering of the data is also used to allow the protocol
to send data that is relevant to the user’s focus. Each node in the
tree represents a particular bounding volume that covers a particular
section of the model. The user’s focus can be given to the protocol
as the identity of the node that covers the section of interest. It is
then possible, due to the partial ordering of the data, to only send
the line of nodes down the branch that leads to the node covering
the area of the model on which the user is focused. The subtree of
the model rooted at this user focus defined node can then be sent
using the normal transport algorithm.

4.4 Deciding What to Transmit
Aside from sending without the retransmission of lost packets as

described so far in the paper, the protocol also has the ability to
use some its throughput to retransmit some or all of the lost data.
We implemented full-reliability by marking lost nodes as lost in
the data structure and first packing those nodes into packets to be
sent. While these nodes will not normally reveal new nodes that
can be sent, this is not a problem for the protocol as there were
nodes that would have been sent that were not, had the protocol
been functioning with no reliability.

Another parameter to consider in transmission is user demand.
The reliability level of a certain part of the tree can be changed
depending on user focus. If there is a particular part of the model
that the user is interested in, then OGP can immediately re-transmit
any lost nodes from the corresponding section of the data structure.
This mechanism works the same way that full-reliability does, ex-
cept that only nodes in the part of the model that are of interest to
the user are marked lost and are therefore retransmitted.

User focus could also be used to partition out one part of the
model to be filled in faster than the other parts, using all available
bandwidth to concentrate on the refinement of relevant parts of the
model if this is desired. Again, the part of the model that is of
interest to the user can be viewed as a subtree of the data structure.
Therefore, OGP begins by packing nodes in depth-first order to
the point where the relevant data begins, and then uses the standard
packing algorithm. We implemented this functionality by assuming
that the user focus is represented by the node that surrounds the
volume of the model that is of interest to the user. This node is then
considered as the root of the subtree that should be sent.

5. EVALUATION
In evaluating OGP, we found it useful to consider data-specific

properties of the protocol, namely, node size and branching fac-
tor. We also evaluated the performance of the protocol in terms of
throughput and fairness to TCP.

47

OGP

TCP
New-Reno

TCP
New-Reno

TCP
New-Reno

1 mb

5 mb

5 mb

5 mb

5 mb

Queue
Size = 10

Sink

Figure 4: Simulation Set-Up

Packets Received Packets Dropped
OGP 3898 135
TCP New-Reno 1 2871 175
TCP New-Reno 2 2866 175
TCP New-Reno 3 2857 175

Table 1: Simulation Results: queue size = 10, runtime = 100s,
bottleneck = 1mb

5.1 Simulation Set-Up
In the simulations we used the ns2 [5] network simulator. The

simulation layout we used is depicted in Figure 4. For the simula-
tion runs, we used a node size of 200bytes and a branching factor of
4. The bottleneck queue size was varied between 5 and 40 packets.
For the simulation runs, we had 3 TCP New-Reno flows and one
OGP flow. The link speeds are given in Figure 4.

5.2 Data-Specific Evaluation
We first evaluated the effect of node size on OGP. As mentioned

in Section 4.1, as node sizes decrease and more nodes are included
in each packet, a breadth-first packing algorithm will encounter
more occurrences of packets being sent that cannot be rendered.
TCP however does not have this problem as it guarantees in-order,
fully-reliable transport. We found however, that smaller node sizes
merely increase the number of nodes that may be used as next sub-
tree roots for each packet that is acknowledged. Therefore small
node sizes have no real effect on OGP. We notice similar results
from larger branching factors. We do not show these results here as
they were all roughly the same.

In our simulations, we found that OGP always achieved 100%
goodput, meaning that all packets received can be rendered. TCP
also achieves 100% goodput due to its full reliability. One interest-
ing point to notice, however, is that the packets sent by OGP can be
immediately rendered, there is never a need to wait for retransmis-
sions or re-ordering.

5.3 Performance Evaluation
The two main results that we wanted to evaluate were TCP fair-

ness and good throughput. Our simulations show that these goals
have been met. As the length of the simulations as well as the
queue size on the bottleneck link were varied, we found that OGP

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100 110

"OGP"
"TCP New-Reno"
"TCP New-Reno"
"TCP New-Reno"

Figure 5: Simulation Results: queue size = 10, bottleneck =
1mb

achieved very similar results to itself. The results for simulations
with a queue size of 10 are displayed in Table 1 and Figure 5.

OGP reacts quicker to congestion, and therefore has fewer pack-
ets in flight during a congestion period. This is due to the fact that
OGP detects losses not by the number of duplicate acknowledg-
ments but instead by the difference between the current acknowl-
edgment and the expected acknowledgment, i.e. gap detection.
This rapid detection of losses allows OGP to cut its congestion win-
dow more rapidly than TCP. OGP, however, gets more throughput
due to the fact that it does not worry about re-ordered packets and it
does not wait to re-send lost packets before opening its flow control
window. TCP New-Reno and OGP did reach an equilibrium point
where all flows were getting bandwidth. OGP achieves approx-
imately 26% better throughput however, due to the mechanisms
already mentioned.

6. CONCLUSION
Given the greater processing power and better graphics cards

in desktop computers, it is now possible for very complex three-
dimensional models to be used in everyday applications. This leads
to the desire to send such models across the network. Due to the
potentially large size of the models, it is necessary to find a way
to stream them efficiently over the network. In order to do this,
the properties of the data structures used to store three-dimensional
models must be exploited. The tree that is used in three-dimensional
models has the property of being partially ordered, i.e. not com-
pletely linear. This led us to analyze the problems of having too
narrow a view of the transport service space. Once we see the space
as expanded, we can understand the problems caused by having too
much reliability provided by the network. We therefore show which
parameters must be considered in designing an efficient protocol
for the transmission of on-demand three-dimensional models. We
discussed the approach to linearize the non-linear partially ordered
tree. We then exploit the approaches to design the On-Demand
Graphic Transport Protocol (OGP). OGP is shown to gain perfor-
mance benefits over TCP, making it clear that the inherent prop-
erties of the three-dimensional modeling data structures should be
used to develop efficient transport mechanisms.

Acknowledgments
We would like to thank Mike Garland for his help in understanding
three-dimensional modeling. We would also like to thank Prashant
Ratanchandani for his help in developing the packing methods used

48

in the protocol. We would also like to thank the entire Mobius
Group for their continued help and support.

7. REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens. Tcp congestion

control. Request for Comments (Standards Track) RFC
2581, Internet Engineering Task Force, April 1999.

[2] P. Amer, P. Conrad, E. Golden, S. Iren, and A. Caro.
Partially-ordered, partially-reliable transport service for
multimedia applications. In Telecommunications /
Information Distribution Research Program Annual
Conference, 1997.

[3] P. D. Amer, C. Chassot, T. J. Connolly, M. Diaz, and
P. Conrad. Partial-order transport service for multimedia and
other applications. IEEE/ ACM Transactions on Networking,
2(5):440–456, 1994.

[4] D. D. Clark and D. L. Tennenhouse. Architectural
considerations for a new generation of protocols. In
Proceedings of the SIGCOMM ’90 Symposium, pages
200–208. 1990.

[5] K. Fall and K. Varadhan. Ns notes and documentation.
LBNL, August 1998.

[6] I. S. O. (ISO). Information technology – generic coding of
moving pictures and associated audio information.
International Standard ISO/DIS 13818, ISO, 1995.

[7] R. Kravets, K. L. Calvert, P. Krishnan, and K. Schwan.
Adaptive variation of reliability. In the Seventh IFIP
Conference on High Performance Networking (HPN’97).
1997.

[8] R. Marasli, P. Amer, and P. Conrad. Optimizing partially
ordered transport services for multimedia applications.
Multimedia Modeling: Towards the Information
Superhighway, 1996.

[9] R. Marasli, P. D. Amer, and P. Conrad. Retransmission-based
partially reliable services: An analytical model. In
Proceedings of IEEE INFOCOM 96. 1996.

[10] C. Papadopoulos and G. Parulkar. Retransmission-based
error control for continuous media applications. In The 6th
International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV) ’96. 1996.

[11] J. Postel. Transmission control protocol. Request for
Comments RFC 761, Internet Engineering Task Force,
January 1980.

[12] J. Postel. User datagram protocol. Request for Comments
RFC 768, Internet Engineering Task Force, August 1980.

[13] S. Rusinkiewicz and M. Levoy. Streaming qsplat: A viewer
for networked visualization of large, dense models.

[14] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution
point rendering system for large meshes. SIGGRAPH, 2000.

[15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
Rtp: A transport protocol for real-time applications. Request
for Comments (Standards Track) RFC 1889, Internet
Engineering Task Force, January 1996.

[16] C. J. Turner and L. L. Peterson. Image transfer: An
end-to-end design. In Proceedings of the SIGCOMM ’92
Symposium, pages 258–268, 1992.

49

